الرياضيات الأساسية الأمثلة

Resolver para n (n^2-2n-15)/(n^2+5n-6)-(n-5)/(2n-2)=1/2
خطوة 1
حلّل كل حد إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
أخرِج العامل من .
خطوة 1.3.3
أخرِج العامل من .
خطوة 2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.10
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.2
اجمع و.
خطوة 3.2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.3.1
ألغِ العامل المشترك.
خطوة 3.2.1.3.2
أعِد كتابة العبارة.
خطوة 3.2.1.4
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.4.1
طبّق خاصية التوزيع.
خطوة 3.2.1.4.2
طبّق خاصية التوزيع.
خطوة 3.2.1.4.3
طبّق خاصية التوزيع.
خطوة 3.2.1.5
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.5.1.1
اضرب في .
خطوة 3.2.1.5.1.2
انقُل إلى يسار .
خطوة 3.2.1.5.1.3
اضرب في .
خطوة 3.2.1.5.2
اطرح من .
خطوة 3.2.1.6
طبّق خاصية التوزيع.
خطوة 3.2.1.7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.7.1
اضرب في .
خطوة 3.2.1.7.2
اضرب في .
خطوة 3.2.1.8
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.8.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.8.2
ألغِ العامل المشترك.
خطوة 3.2.1.8.3
أعِد كتابة العبارة.
خطوة 3.2.1.9
طبّق خاصية التوزيع.
خطوة 3.2.1.10
اضرب في .
خطوة 3.2.1.11
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.11.1
طبّق خاصية التوزيع.
خطوة 3.2.1.11.2
طبّق خاصية التوزيع.
خطوة 3.2.1.11.3
طبّق خاصية التوزيع.
خطوة 3.2.1.12
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.12.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.12.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.12.1.1.1
انقُل .
خطوة 3.2.1.12.1.1.2
اضرب في .
خطوة 3.2.1.12.1.2
اضرب في .
خطوة 3.2.1.12.1.3
اضرب في .
خطوة 3.2.1.12.2
أضف و.
خطوة 3.2.2
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
أضف و.
خطوة 3.2.2.1.2
أضف و.
خطوة 3.2.2.2
اطرح من .
خطوة 3.2.2.3
اطرح من .
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
ألغِ العامل المشترك.
خطوة 3.3.1.3
أعِد كتابة العبارة.
خطوة 3.3.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 3.3.2.1
طبّق خاصية التوزيع.
خطوة 3.3.2.2
طبّق خاصية التوزيع.
خطوة 3.3.2.3
طبّق خاصية التوزيع.
خطوة 3.3.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1.1
اضرب في .
خطوة 3.3.3.1.2
انقُل إلى يسار .
خطوة 3.3.3.1.3
أعِد كتابة بالصيغة .
خطوة 3.3.3.1.4
اضرب في .
خطوة 3.3.3.2
اطرح من .
خطوة 4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
اطرح من كلا المتعادلين.
خطوة 4.1.2
اطرح من كلا المتعادلين.
خطوة 4.1.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
اطرح من .
خطوة 4.1.3.2
أضف و.
خطوة 4.1.4
اطرح من .
خطوة 4.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
اقسِم كل حد في على .
خطوة 4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.2
اقسِم على .
خطوة 4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1.1
أخرِج العامل من .
خطوة 4.2.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1.2.1
أخرِج العامل من .
خطوة 4.2.3.1.2.2
ألغِ العامل المشترك.
خطوة 4.2.3.1.2.3
أعِد كتابة العبارة.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: